SAARLAND UNIVERSITY Department of Mathematics Prof. Dr. Mark Groves MSc Jens Horn

Mathematics for Computer Scientists 1, WS 2017/18 Sheet 8

(b) $\lim_{n \to \infty} \frac{n+3}{n^3+4} = 0$

(d) $\lim_{n \to \infty} \sqrt[8]{n^2 + 1} - \sqrt[4]{n + 1} = 0$

- **1.** Prove the following statements.
 - (a) $\lim_{n \to \infty} \frac{n}{n+1} = 1$

(c)
$$\lim_{n \to \infty} \sqrt[8]{n^2 + 1} - \sqrt[8]{n^2} = 0$$

- (e) $\lim_{n \to \infty} \frac{n!}{n^n} = 0$ [Hint: $\frac{2}{n}, \frac{3}{n}, \dots, \frac{n-1}{n} \le 1.$]
- (f) $\lim_{n \to \infty} \sqrt[n]{n} = 1$

[Hint: For each $\varepsilon > 0$ one has that $\frac{n}{(1+\varepsilon)^n} \to 0$ as $n \to \infty$, and in particular there exists $N \in \mathbb{N}$ such that $\frac{n}{(1+\varepsilon)^n} < 1$ for all n > N.]

(g)
$$\lim_{n \to \infty} \sqrt[n]{a} = 1$$
 für $a > 0$

[Hint: There exists $N \in \mathbb{N}$ with $\frac{1}{n} < a < n$ for all n > N.]

- (h) $\lim_{n \to \infty} \sqrt[n]{a^n + b^n} = a \text{ für } a > b > 0$ [Hint: $\sqrt[n]{a^n + b^n} = a \sqrt[n]{1 + \left(\frac{b}{a}\right)^n} \text{ and } 1 < 1 + \left(\frac{b}{a}\right)^n < 2.]$
- **2.** (a) Let X be a non-empty set of real numbers which is bounded above. Prove that there is a sequence $\{x_n\}$ of numbers in X which converges to $\sup X$. (The sequence $\{x_n\}$ is called a *maximising sequence* for X.)

[Hint: Use the final lemma in Section 2.6 with $\varepsilon = \frac{1}{n}$.]

Formulate a corresponding result for minimising sequences.

(b) Let r be an arbitrary real number. Prove that there exists a sequence $\{q_n\}$ of rational numbers which converges to r.

[Hint: Use the final remark in Section 2.7 with $\varepsilon = \frac{1}{n}$.]

3. The sequence $\{x_n\}$ is determined by the recursive scheme

$$x_1 = 2,$$
 $x_{n+1} = 1 + \frac{6}{x_n}, \quad n = 1, 2, 3, \dots$

Show that

(i)
$$x_n \in [2,4] \Rightarrow x_{n+1} \in [2,4],$$
 (ii) $x_{n+2} = 7 - \frac{36}{x_n + 6},$
(iii) $x_{n+2} \ge x_n \Rightarrow x_{n+3} \le x_{n+1},$ (iv) $x_{n+2} \le x_n \Rightarrow x_{n+3} \ge x_{n+1}$

für n = 1, 2, 3, ...

Prove that the sequences x_1 , x_3 , x_5 , ... and x_2 , x_4 , x_6 , ... converge and determine their limits. Deduce that $\{x_n\}$ converges and determine its limit.