SAARLAND UNIVERSITY Department of Mathematics Prof. Dr. Mark Groves MSc Jens Horn

Mathematics for Computer Scientists 1, WS 2017/18 Sheet 7

1. Prove using the prime decomposition theorem that \sqrt{n} is irrational for each $n \in \mathbb{N}$ with $n \neq m^2$ for some $m \in \mathbb{N}$.

- **2.** a) Show that the sum of a irrational number and a rational number is irrational.
 - b) Show that the product of an irrational number and a non-zero rational number is irrational.
 - c) Give a counterexample to the assertion that the sum and product of two irrational numbers is rational.
 - d) Give a counterexample to the assertion that the sum and product of two irrational numbers is irrational.

3. Show that \mathbb{C} is not an ordered field with respect to the usual addition and multiplication. [Hint: Show that the assumptions 0 < i and i < 0 both lead to contradictions.]

3. Let

$$A = \{ z \in \mathbb{C} : |z - 2 - 3i| < |z + 4 - 5i| \}, \\ B = \{ z \in \mathbb{C} : 0 \le \arg(z + 3 - 4i) < \pi/4 \}.$$

Sketch the set $A \cap B$.

4. Find all complex solutions to the following equations.

(a) $3z^2 + z = 1$ (b) $z^2 - (3 + i)z + 4 + 3i = 0$ (c) $\sinh z = i$ (d) $z^2 + 2\bar{z}^2 + z - \bar{z} + 9 = 0$ (e) $z^4 - 4z^2 + 16 = 0$ (f) $z^4 + 1 = 0$ (g) $(z^2 - 1)^3 = 8z^3$ (h) $z^6 - 3iz^3 - 2 = 0$ (i) $z^3 + 2z^2 + 2z = 0$ (j) $z^3 - (3 + i)z^2 + (2 + 3i)z - 2i = 0$ (k) $e^z = e^{iz}$ (l) $e^{2z} + ie^z + 1 = 0$

5. Compute $(4\sqrt{3} - 4i)^{88}$. [Hint: use de Moivre's theorem.]