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1. Prove the following statements.
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2. The sequence {x,} is determined by the recursive scheme
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Prove that the sequences x1, x3, x5, ...and xy, x4, xg, ...converge and determine their
limits. Deduce that {x,} converges and determine its limit.



3. Consider the sequence {a,}, where a, = (1 + £)".

(a) Show that
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(b) Use Bernoulli's inequality
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to prove the estimate
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(c) Use the binomial expansion
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(d) Prove that
a, < 3, neN

[Hint: 2771 < 4! for all j € N|]

(e) Deduce that {a,} converges to a real number in the interval (2,3). (This number is
Euler’s number e.)



