SAARLAND UNIVERSITY Department of Mathematics Prof. Dr. Mark Groves MSc Jens Horn

Mathematics for Computer Scientists 1, WS 2018/19 Sheet 9

1. Prove the following statements.

(a)
$$\lim_{n \to \infty} \frac{n}{n+1} = 1$$
(b)
$$\lim_{n \to \infty} \frac{n+3}{n^3+4} = 0$$
(c)
$$\lim_{n \to \infty} \sqrt[8]{n^2+1} - \sqrt[8]{n^2} = 0$$
(d)
$$\lim_{n \to \infty} \sqrt[8]{n^2+1} - \sqrt[4]{n+1} = 0$$
(e)
$$\lim_{n \to \infty} \frac{n!}{n^n} = 0$$
[Hint: $\frac{2}{n}, \frac{3}{n}, \dots, \frac{n-1}{n} \le 1.$]
(f)
$$\lim_{n \to \infty} \sqrt[8]{n} = 1$$
[Hint: For each $\varepsilon > 0$ one has that $\frac{n}{(1+\varepsilon)^n} \to 0$ as $n \to \infty$, and in particular there exists $N \in \mathbb{N}$ such that $\frac{n}{(1+\varepsilon)^n} < 1$ for all $n > N.$]
(g)
$$\lim_{n \to \infty} \sqrt[8]{a} = 1$$
 für $a > 0$
[Hint: There exists $N \in \mathbb{N}$ with $\frac{1}{n} < a < n$ for all $n > N.$]

(h)
$$\lim_{n \to \infty} \sqrt[n]{a^n + b^n} = a \text{ für } a > b > 0$$

[Hint: $\sqrt[n]{a^n + b^n} = a \sqrt[n]{1 + \left(\frac{b}{a}\right)^n} \text{ and } 1 < 1 + \left(\frac{b}{a}\right)^n < 2.]$

2. The sequence $\{x_n\}$ is determined by the recursive scheme

$$x_1 = 2,$$
 $x_{n+1} = 1 + \frac{6}{x_n}, \quad n = 1, 2, 3, \dots$

Show that

(i)
$$x_n \in [2,4] \Rightarrow x_{n+1} \in [2,4],$$
 (ii) $x_{n+2} = 7 - \frac{36}{x_n + 6},$
 $x_{n+2} \ge x_n \Rightarrow x_{n+3} \le x_{n+1},$ (iv) $x_{n+2} \le x_n \Rightarrow x_{n+3} \ge x_{n+1}$

für $n = 1, 2, 3, \ldots$

(iii)

Prove that the sequences x_1 , x_3 , x_5 , ... and x_2 , x_4 , x_6 , ... converge and determine their limits. Deduce that $\{x_n\}$ converges and determine its limit.

- **3.** Consider the sequence $\{a_n\}$, where $a_n = (1 + \frac{1}{n})^n$.
 - (a) Show that

$$\frac{a_{n+1}}{a_n} = \left(1 - \frac{1}{(n+1)^2}\right)^{n+1} \frac{n+1}{n}, \qquad n \in \mathbb{N}.$$

(b) Use Bernoulli's inequality

$$(1+x)^k \ge 1 + kx, \qquad x \ge -1, \ k \in \mathbb{N},$$

to prove the estimate

$$\frac{a_{n+1}}{a_n} \ge 1, \qquad n \in \mathbb{N}.$$

(c) Use the binomial expansion

$$(1+x)^n = \sum_{j=0}^n \frac{n!}{j!(n-j)!} x^j, \qquad |x| < 1, \ n \in \mathbb{N},$$

to prove the estimate

$$a_n \le \sum_{j=0}^n \frac{1}{j!}, \qquad n \in \mathbb{N}.$$

[Hint:

$$\frac{n!}{(n-j)!}\frac{1}{n^j} = \frac{n}{n} \cdot \frac{n-1}{n} \cdot \dots \cdot \frac{n-j+1}{n}$$

for $n \in \mathbb{N}$ and $j = 0, 1, \ldots, n$.]

(d) Prove that

$$a_n \leq 3, \qquad n \in \mathbb{N}.$$

[Hint: $2^{j-1} \leq j!$ for all $j \in \mathbb{N}$.]

(e) Deduce that $\{a_n\}$ converges to a real number in the interval (2,3). (This number is *Euler's number* e.)