SAARLAND UNIVERSITY Department of Mathematics Prof. Dr. Mark Groves MSc Jens Horn

Mathematics for Computer Scientists 1, WS 2018/19 Sheet 2

1. Let $G = \{1, 2, 3, 4\}$ and define relations R_1 , R_2 , R_3 on G by

 $R_1 = \{(1,2), (2,1)\},\$ $R_2 = \{(1,1), (2,2), (3,3), (4,4)\},\$ $R_3 = \{(1,1), (1,3), (2,2), (3,1), (3,3), (4,4)\}.\$

Are these relations reflexive, complete, symmetric, asymmetric, antisymmetric and/or transitive?

2. Define relations \sim_a , \sim_a , \sim_c on \mathbb{Z} by

Are these relations reflexive, connex, symmetric, asymmetric, antisymmetric and/or transitive?

3. Define a relation \sim on $\mathbb{N}_0 \times \mathbb{N}_0$ by

 $(p,n) \sim (q,m) \qquad \Leftrightarrow \qquad p+m=q+n.$

- (a) Show that \sim is an equivalence relation on $\mathbb{N}_0 \times \mathbb{N}_0$.
- (b) Show that

$$(p,n) \sim (k+p,k+n)$$

for all $k \in \mathbb{N}_0$.

(c) Denote the equivalence class [(k,0)] by ${\bf k}$ and define the 'sum' of two equivalence classes by the formula

$$[(p,n)] + [(q,m)] = [(p+q,n+m)].$$

Determine the equivalence class $-\mathbf{k}$ with the property that

$$-\mathbf{k}+\mathbf{k}=\mathbf{0}.$$

[You may assume that '+' is well defined.]

4. Let M be a non-empty set and define a relation \preceq on the power set P(M) of M by

$$A \preceq B \quad \Leftrightarrow \quad A \subseteq B.$$

Show that this relation is a partial order. When is it a total order?