UNIVERSITÄT DES SAARLANDES

Fachrichtung 6.1 (Mathematik)

Prof. Dr. Mark Groves

MSc Jens Horn

Mathematik für Informatiker 2, SS 2018 Übungsblatt 6

1. Welche der folgenden Abbildungen sind linear?

(i)
$$\mathbb{R}^2 \to \mathbb{R}$$
, $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto x + 2y$

(v)
$$\mathbb{R}^2 o \mathbb{R}^2$$
, $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+1 \\ y-1 \end{pmatrix}$

(ii)
$$\mathbb{R}^2 \to \mathbb{R}, \quad \begin{pmatrix} x \\ y \end{pmatrix} \mapsto x + y^2$$

(vi)
$$\mathbb{R}^2 o \mathbb{R}^2$$
, $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x-y \\ x+2y \end{pmatrix}$

(iii)
$$\mathbb{R}^2 \to \mathbb{R}, \quad \begin{pmatrix} x \\ y \end{pmatrix} \mapsto xy$$

(vii)
$$\mathcal{P}_n(\mathbb{R}) \to \mathbb{R}, \quad p(x) \mapsto p(1)$$

(iv)
$$\mathbb{C} \to \mathbb{C}$$
, $z \mapsto \overline{z}$

(viii)
$$\mathcal{P}_n(\mathbb{R}) \to \mathcal{P}_{n+2}(\mathbb{R}), \quad p(x) \mapsto x^2 p(x)$$

2. (a) Es sei $T: \mathbb{R}^3 \to \mathbb{R}^3$ die durch die Formel

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - y \\ x + 2y - z \\ 2x + y + z \end{pmatrix}$$

definierte lineare Abbildung. Finden Sie die Darstellungsmatrix von T bezüglich der üblichen Basis für \mathbb{R}^3 .

(b) Es seien $n \in \mathbb{N}$ und $T : \mathcal{P}_n(\mathbb{R}) \to \mathcal{P}_n(\mathbb{R})$ die durch die Formel

$$(T(p))(x) = p(x+1)$$

definierte lineare Abbildung. Finden Sie die Darstellungsmatrix von T bezüglich der üblichen Basis für $\mathcal{P}_n(\mathbb{R})$.

(c) Es sei $T: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ die durch die Formel

$$T\left(\begin{array}{cc}a&b\\c&d\end{array}\right) = \left(\begin{array}{cc}a&2b\\3c&4d\end{array}\right)$$

definierte lineare Abbildung. Finden Sie die Darstellungsmatrix von T bezüglich der üblichen Basis für $\mathbb{R}^{2\times 2}$.

3. Die Darstellungsmatrix der linearen Abbildung $T:\mathbb{R}^3 \to \mathbb{R}^3$ bezüglich der üblichen Basis für \mathbb{R}^3 sei

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right).$$

Finden Sie die Darstellungsmatrix von T bezüglich der Basis

$$\left\{ \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} -2\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\1 \end{pmatrix} \right\}$$

für \mathbb{R}^3 .

[Hinweis: Mit Hilfe der Matrix A können Sie eine Formel für $T \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ finden.]

- **4.** (a) Es seien U, V, W Vektorräume über einem Körper K und $S:U\to V$, $T:V\to W$ Isomorphismen. Zeigen Sie, dass $S^{-1}:V\to U$ und $T\circ S:U\to W$ ebenfalls Isomorphismen sind.
- (b) Es sei M die Menge aller Vektorräume úber einem Körper K. Zeigen Sie, dass die Formel

$$V \sim W \qquad \Leftrightarrow \qquad V \cong W$$

eine Äquivalenzrelation auf M definiert.

(c) Es seien V und W zwei endlichdimensionale, isomorphe Vektorräume über einem Körper K. Zeigen Sie, dass $\dim V = \dim W$.

[Hinweis: Es seien $\{e_1,\ldots,e_n\}$ eine Basis für V und $T:V\to W$ ein Isomorphismus. Zeigen Sie, dass $\{T(e_1),\ldots,T(e_n)\}$ eine Basis für W ist.]